
Weight and balance

JORA Build Number:	Aircraft registration number:	Date: /	-	

Content:

Procedure for weighing and calculating the centre of gravity on the Jora ULA	1
Weight and balance sheet:	2
Example of a Jora ULA with a Rotax 582, belly radiator max loaded:	
·	
Example of a Jora ULA with a Rotax 582, belly radiator empty:	4
Calculating the centre of gravity	2

Procedure for weighing and calculating the centre of gravity on the Jora ULA

- Set the aircraft on three scales, each able to measure minimum 130 kg, each for one wheel.
- In order to get correct weights for points **Gp** and **Gh**:
 - o Ensure the aircraft to be in absolute horizontal level using a spirit level on the floor.
 - o A correct sideways level between the rear main wheels is also necessary.
 - o Adjust by adding height under each scale if necessary.
- The two weights measured on each scale under the rear wheels is added as one sum **Gh**.

Weight and balance sheet:

- Arm the horizontal distance from the reference datum of the Jora (prop mount).
- Centre of Gravity the point the Jora would balance if suspended from that point.
- Moment the product of the weight of an item multiplied by its arm.

Weight position	Weight	Arm in cm	Moment
Nose wheel		25	
Main wheels		166	
Pilot		161	
Co-pilot		161	
Fuel		120	
Baggage		210	
Total			
		CG:	

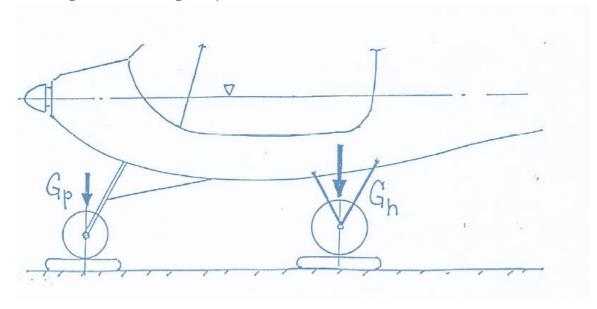
Weights measures for the wheels must be done with empty aircraft with little fuel.

CG: total moment divided by total weight.

Petrol weight is 0.73722 kg per litre.

According to JAA regulations the pilot and co-pilot is per definition 150 kg.

Max CG front: 140 cm Max CG aft: 152 cm


Example of a Jora ULA with a Rotax 582, belly radiator max loaded:

Weight position	Weight	Arm in cm	Moment
Nose wheel	36	25	900
Main wheels	209	166	34694
Pilot	75	161	12075
Co-pilot	75	161	12075
Fuel	29	120	3480
Baggage	26	210	5460
Total	450		68264
		CG : 68264 / 450	151,7

Example of a Jora ULA with a Rotax 582, belly radiator empty:

	, ,	1 /	
Weight position	Weight	Arm in cm	Moment
Nose wheel	36	25	900
Main wheels	209	166	34694
Pilot		161	
Co-pilot		161	
Fuel		120	
Baggage		210	
Total	245		35594
		CG : 35594 / 245	145,2

Calculating the centre of gravity

- Set the aircraft on three scales, each able to measure minimum 130 kg, each for one wheel.
- In order to get correct weights for points **Gp** and **Gh**:
 - o Ensure the aircraft to be in absolute horizontal level using a spirit level on the floor.
 - o A correct sideways level between the rear main wheels is also necessary.
 - o Adjust by adding height under each scale if necessary.
- The two weights measured on each scale under the rear wheels is added as one sum **Gh**.
- Measure the distance between the **axle** of the main gear and the front wheel axle in millimetre as measure **Lp**.
- Measure with the help of a plumb-bob the distance from the wing leading edge to the **axle** of the main undercarriage in millimetre as measure **La**.

Lt = $\underline{\mathbf{Gp} \times \mathbf{Lp}}$ Distance from the CG of the aircraft to the main undercarriage axle in millimetre.

Xt = La - Lt This distance is expressed in percentage by MAC, (mean aerodynamic chord), and is
xt = Xt / bsat * 100 = Xt / 12

Measure values		Max and minimums	
MAC	= mm	The centre of gravity according to the	
Gp	= kg	documentation can be between 30% and 40%	
Gh	= kg	from MAC.	
G	= kg		
Lp	= mm	Max and minimum span for the centre of	
Lt	= mm	gravity from the wing leading edge:	
Xt	= mm	- Front max: 360 mm.	
X%	= %	- Aft max: 520 mm.	